V1 (@2025)

Digital Circuits

Lecture 3:

Additional Gates

By: M.Razeghizadeh

Start now!

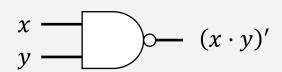
Contents of This Slide

- Additional Gates and Symbols
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Exclusive OR (XOR) and Exclusive NOR (XNOR) gates
- Odd and Even functions

- Why?
 - Low cost implementation
 - Useful in implementing Boolean functions

$$x \longrightarrow x \cdot y$$

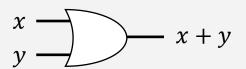
AND gate



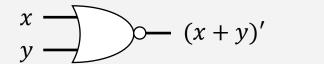
NAND gate



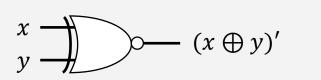
XOR gate



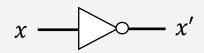
OR gate



NOR gate

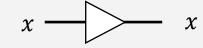


XNOR gate

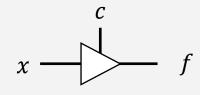


Additional Logic Gates and Symbols

NOT gate (inverter)



Buffer



3-state gate

NAND Gate

- The NAND gate has the following symbol and truth table
- NAND represents NOT AND
- The small bubble circle represents the invert function

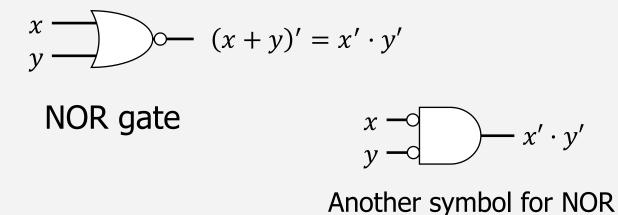
Another symbol for NAND

X	у	NAND
0	0	1
0	1	1
1	0	1
1	1	0

- NAND gate is implemented efficiently in CMOS technology
 - In terms of chip area and speed

● ● ■ NOR Gate

- The NOR gate has the following symbol and truth table
- NOR represents NOT OR
- The small bubble circle represents the invert function



X	у	NOR
0	0	1
0	1	0
1	0	0
1	1	0

- NOR gate is implemented efficiently in CMOS technology
 - In terms of chip area and speed

The NAND Gate is Universal

- NAND gates can implement any Boolean function
- NAND gates can be used as inverters, or to implement AND/OR
- A single-input NAND gate is an inverter

$$x \text{ NAND } x = (x \cdot x)' = x'$$

AND is equivalent to NAND with **inverted output**

$$(x \text{ NAND } y)' = ((x \cdot y)')' = x \cdot y \text{ (AND)} \quad x \longrightarrow x \cdot y$$

OR is equivalent to NAND with **inverted inputs**

$$(x' \text{ NAND } y') = (x' \cdot y')' = x + y \text{ (OR)}$$
 $x \to x'$
 $y \to y'$
 $y \to y'$

The NAND Gate is Universal

Inverter:

$$x \text{ NAND } x = (x \cdot x)' = x'$$

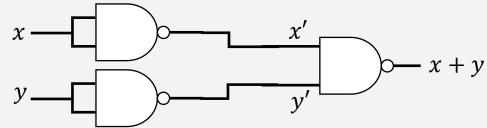
AND:

$$(x \text{ NAND } y)' = ((x \cdot y)')' = x \cdot y \text{ (AND)}$$

OR:

$$x \longrightarrow x \cdot y$$

$$(x' \text{ NAND } y') = (x' \cdot y')' = x + y \text{ (OR)}$$



The NOR Gate is also Universal

- NOR gates can implement any Boolean function
- NOR gates can be used as inverters, or to implement AND/OR
- A single-input NOR gate is an inverter

$$x \text{ NOR } x = (x + x)' = x'$$

OR is equivalent to NOR with **inverted output**

$$(x \text{ NOR } y)' = ((x + y)')' = x + y \text{ (OR)}$$

AND is equivalent to NOR with **inverted inputs**

$$(x' \text{ NOR } y') = (x' + y')' = x \cdot y \text{ (AND)}$$
 $x \to x'$
 $y \to y'$

Unlike AND, NAND operation is NOT associative

 $(x \text{ NAND } y) \text{ NAND } z \neq x \text{ NAND } (y \text{ NAND } z)$

(x NAND y) NAND
$$z = ((xy)'z)' = ((x' + y')z)' = xy + z'$$

$$x \text{ NAND } (y \text{ NAND } z) = (x(yz)')' = (x(y' + z'))' = x' + yz$$

Unlike OR, NOR operation is NOT associative

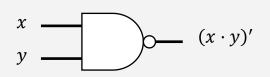
 $(x \text{ NOR } y) \text{ NOR } z \neq x \text{ NOR } (y \text{ NOR } z)$

$$(x \text{ NOR } y) \text{ NOR } z = ((x+y)'+z)' = ((x'y')+z)' = (x+y)z'$$

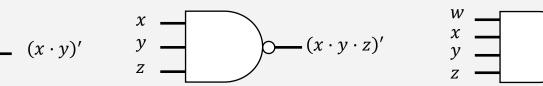
$$x \text{ NOR } (y \text{ NOR } z) = (x + (y + z)')' = (x + (y'z'))' = x'(y + z)$$

Multiple-Input NAND / NOR Gates

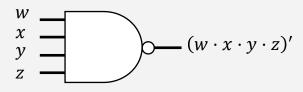
NAND/NOR gates can have multiple inputs, similar to AND/OR gates



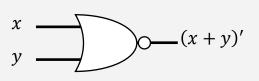
2-input NAND gate



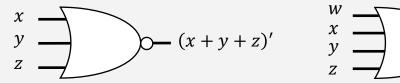
3-input NAND gate



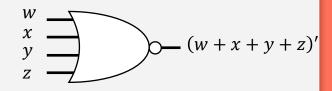
4-input NAND gate



2-input NOR gate



3-input NOR gate



4-input NOR gate

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. The same can be said about other multiple-input NAND/NOR gates.

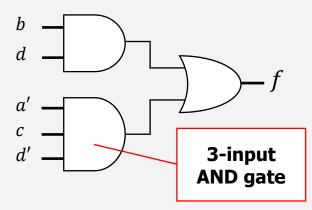
NAND - NAND Implementation

Consider the following sum-of-products (SOP) expression:

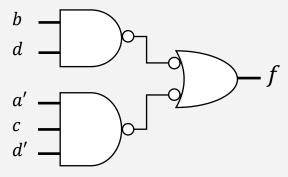
$$f = bd + a'cd'$$

 A 2-level AND-OR circuit can be converted easily to a 2-level NAND-NAND implementation

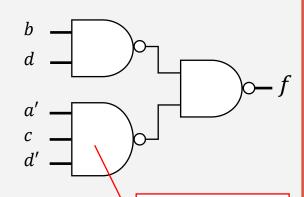
2-Level AND-OR



Inserting Bubbles



2-Level NAND-NAND



Two successive bubbles on same line cancel each other

3-input NAND gate

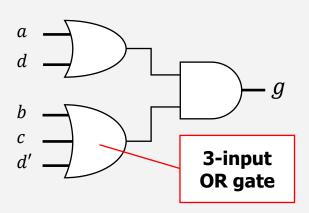
Non-Associative NAND / NOR Operations

Consider the following product-of-sums (POS) expression:

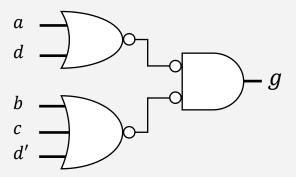
$$g = (a+d)(b+c+d')$$

 A 2-level OR-AND circuit can be converted easily to a 2-level NOR-NOR implementation

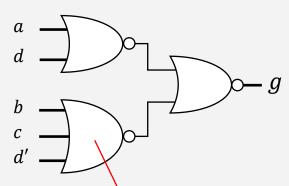
2-Level OR-AND



Inserting Bubbles



2-Level NOR-NOR



Two successive bubbles on same line cancel each other

3-input NOR gate

Exclusive OR / Exclusive NOR

- Exclusive OR (XOR) is an important Boolean operation used extensively in logic circuits
- Exclusive NOR (XNOR) is the complement of XOR

X	у	XOR
0	0	0
0	1	1
1	0	1
1	1	0

$$x \rightarrow y$$
XOR gate

X	y	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

XNOR is also known as **equivalence**

$$\begin{array}{c} x \\ y \end{array} \qquad (x \oplus y)' = (x \odot y)$$
XNOR gate

XOR / XNOR Functions

- The XOR function is: $x \oplus y = xy' + x'y$
- The XNOR function is: $(x \odot y) = (x \oplus y)' = xy + x'y'$
- XOR and XNOR gates are complex
 - Can be implemented as a true gate, or by
 - Interconnecting other gate types
- XOR and XNOR gates do not exist for more than two inputs
 - For 3 inputs, use two XOR gates
 - The cost of a 3-input XOR gate is greater than the cost of two XOR gates
- Uses for XOR and XNOR gates include:
 - Adders, subtractors, multipliers, counters, incrementers, decrementers
 - Parity generators and checkers

XOR and XNOR Properties

$$x \oplus 0 = x$$

$$x \oplus 1 = x'$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y = y \oplus x$$

$$x' \oplus y' = x \oplus y$$

$$(x \oplus y)' = x' \oplus y = x \oplus y'$$

XOR and XNOR are **associative** operations

$$(x \oplus y) \oplus z = x \oplus (y \oplus z) = x \oplus y \oplus z$$

$$((x \oplus y)' \oplus z)' = (x \oplus (y \oplus z)')' = x \oplus y \oplus z$$

Odd Function with 3 inputs

Odd Function

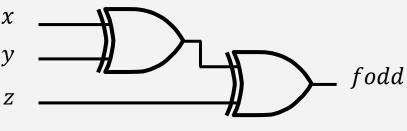
- Output is 1 if the number of 1's is odd in the inputs
- Output is the XOR operation on all input variables

X	У	Z	fodd
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$fodd = \sum (1, 2, 4, 7)$$

$$fodd = x'y'z + x'yz' + xy'z' + xyz$$

$$fodd = x \oplus y \oplus z$$



Implementation using two XOR gates

Even Function with 4 inputs

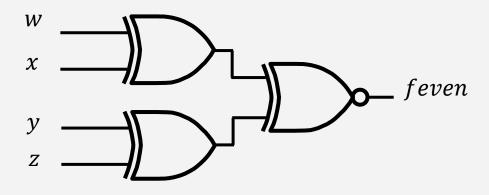
Even Function

W	X	У	Z	feven
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- Output is 1 if the number of 1's is even in the inputs (complement of odd function)
- Output is the XNOR operation on all inputs

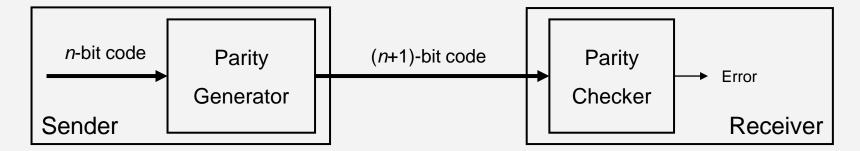
$$feven = \sum (0, 3, 5, 6, 9, 10, 12, 15)$$

$$feven = (w \oplus x \oplus y \oplus z)'$$



Implementation using two XOR gates and one XNOR

Even Function



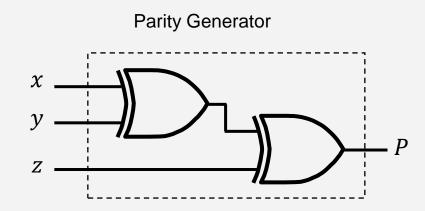
- A parity bit is added to the n-bit code
 - Produces (n+1)-bit code with an odd (or even) count of 1's
- Odd parity: count of 1's in the (n+1)-bit code is odd
 - Use an even function to generate the odd parity bit
 - Use an even function to check the (n+1)-bit code
- Even parity: count of 1's in the (n+1)-bit code is even
 - Use an odd function to generate the even parity bit
 - Use an odd function to check the (n+1)-bit code

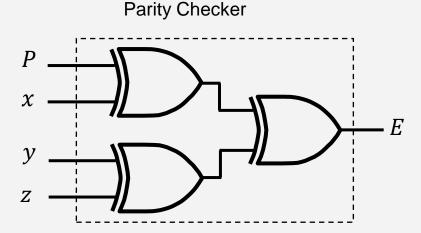
Even Function

Design even parity generator & checker for 3-bit codes

Solution:

- ♦ Use **3-bit odd function** to generate even parity bit *P*.
- ♦ Use **4-bit odd function** to check if there is an error E in even parity.
- \Rightarrow Given that: xyz = 001 then P = 1. The sender transmits Pxyz = 1001.
- ♦ If y changes from 0 to 1 between generator and checker, the parity checker receives Pxyz = 1011 and produces E = 1, indicating an error.





razeghizade@gmail.com

Razeghizade.pudica.ir

CREADITS: This presentation was created by M.Razeghizadeh
Please keep this slide for attribution